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SOME FINITELY ADDITIVE VERSIONS OF 
THE STRONG LAW OF LARGE NUMBERS* 

BY 

ROBERT CHEN 

ABSTRACT 

Let X be a non-empty set, H = X ®, o-= yl× y~×""  be an independent 
strategy on H, and {Y.} be a sequence of coordinate mappings on H. The 
following strong law in a finitely additive setting is proved: For some constant 
r_->l, if ET=,{o'(IY. 12")/n'÷'}< oo and o '(Y.)=0 for all n = l , 2 , . . . ,  then 
~ET_IY I converges to 0 with o'-measure 1 as n--->oo. The theorem is a 
generalization of Chung's strong law in a coordinate representation process. 
Finally, Kolmogorov's strong law in a finitely additive setting is proved by an 
application of the theorem. 

I. Introduction 

Let  X be  a n o n - e m p t y  set with the  d i sc re te  topo logy ,  H = X ® with the  p r o d u c t  

t opo logy ,  and  F(X) be the  set of all f ini tely add i t ive  p r o b a b i l i t y  m e a s u r e s  

def ined  on the  class of  all  subse ts  of  X. A s  def ined  by  D u b i n s  and  Savage  [4], a 

s t ra tegy  ~r on H is a s equence  (o,0, ~rt, ~r2, • • • ), whe re  or0 is in F(X), and,  for  each  

pos i t ive  in teger  n, or. is a m a p p i n g  f rom X "  to F(X). F o r  any pos i t ive  in teger  n, 

any e l e m e n t  ( x ~ , x 2 , - . . , x . )  in X "  is ca l led  a pa r t i a l  h is tory  with length  n. 

S u p p o s e  that  cr is a s t ra tegy  on H,  p = (xl,  x 2 , "  ", x . )  is a pa r t i a l  h is tory  with 

length  n, then  the  cond i t i ona l  s t ra tegy  given the  pa r t i a l  h is tory  p with r e spec t  to  

the  s t ra tegy  o- is a s t ra tegy  (wri t ten  o-[p]) on H def ined  by (i) (or[p])0 = cr , (p)  = 

o'.(x~,x:,..., x,), i.e., (o'[p])o is just  the  f ini tely add i t ive  p robab i l i t y  m e a s u r e  

o, ,(xl ,  x 2 , "  ", x , ) ,  and  (ii) for  any pos i t ive  in teger  m, (or[p]),.  is a m a p p i n g  f rom 

X m to F(X) def ined  by  (~r[p])m(x ' l ,x~, ' "  " , x ' ) =  c r .+ , . ( x~ ,x2 , - - ' , x . ,  

xl, x ; , "  ",x') for  all (x[ ,x~, . . . ,x ' )  in X m. In [7], Purves  and  S u d d e r t h  call  a 

s t ra tegy  o- on H i n d e p e n d e n t ,  if t he re  exists  a s e q u e n c e { y . } i n  F ( X ) s u c h  that  
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tro= Yl, and for each positive integer n and all n-tuple p = (xl, x2, • •., x,)  in X", 

o' ,(p) = y,+l and they write 71 × 3'2 x • • • for o-. If, in addition, there is a finitely 

additive probability measure y in F(X) such that 3' = 3'1 = 3'2 . . . .  , then o" is 

said to be independent and identically distributed, and y × y × • • • is written for 

such a strategy. 

In [7], Purves and Sudderth showed that if o" is a strategy on H, then there 

exists a field ~t(tr) containing all Borel subsets of H and a finitely additive 

probability measure (still denoted by tr) such that o- is defined on ~t(tr) with 

some nice properties. Based on this result, we can consider (H, s¢(tr), tr) as a 

finitely additive probability space and a standard theory of integration with 

respect to the finitely additive probability measure tr on the field ~¢(tr) is 

available (cf [2], [5]). Later  we will use o-(Y) to denote  the integral of the 

real-valued function Y on H with respect to the strategy tr. 

A sequence {Y.} of real-valued functions on H is called a sequence of 

coordinate mappings on H if the function Y, depends only on the nth 

coordinate for all n = 1, 2,.  • •. A sequence { Y,} of real-valued functions on H is 

called a sequence of identical, coordinate mappings on H if { Y, } is a sequence of 

coordinate mappings on H which satisfies the following property: For each pair 

(re, n) of positive integers, Y , , (h )=  Y.(h) whenever x,, = x ,  and h = 

(Xl ,  X2," ° ' ,Xm, ' ' ' ,Xn, '"  ") is in /4. 

In [7], Purves and Sudderth have shown that if o- is an independent strategy on 

H and { Y, } is a sequence of uniformly bounded coordinate mappings on H such 

that t r (Y,)  = 0 for all n = 1 ,2 , - . - ,  then the set 

A = h !!m 1/, E 0 
~ j= l  

has o'-measure one. In this paper, we show that the above result still holds 

without the boundedness assumption (see Theorems 4.1, 4.2 below). Further- 

more, we also show that Kolmogorov's  strong law of large numbers holds for 

independent,  identically distributed strategies and sequences of identical, coor- 

dinate mappings (see Theorem 4.3 below). 

2. Preliminary definitions and some useful lemmas 

Throughout  this paper, X is a non-empty set with the discrete topology and 

H = X ~ with the product topology. Subsets of H which are simultaneously 

closed and open in this topology will be referred to as clopen. If K is a subset of 

H, Y is a real-valued function on H, and p = (xl, x 2 , "  ", x,)  is a partial history, 

then the set Kp is defined by 
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Kp = [h ' =  ( x ' l , x ~ , " ' ) l p h '  

and the function Yp on H is defined by 

DEFINmON 2.1. A stop rule r on H is 

positive integers such that if h, h '  are in H 

r ( h )  coordinates, then r ( h ' ) =  r (h) .  An 

= ( x , , x 2 , ' " , x . , x ' , x ~ , " ' ) E K ]  

Yp(h')  = Y(ph')  for all h '  in H. 

a mapping from H to the set of all 

and h '  agrees with h through the first 

incomplete stop rule r*  on H is a 

mapping from H to the set of all positive integers and ~ such that if h, h ' E  H 

and h' agrees with h throughout the first r*(h ) coordinates, then ~-*(h ') = r*(h ). 

DEVINmON 2.2. A subset K of H is said to be determined by a stop rule z on 

H if and only if, "for  any h in K and any h'  in H, if h '  agrees with h through the 

first r ( h )  coordinates, then h '  is in K." 

The proof of Lemmas 2.1, 2.2, 2.3 is straightforward and the details are 

presented in [2]. 

LEMMA 2.1. Let o- = yl x )'2 x • • • be an independent strategy on H, Y be a 

real-valued function on H which depends only on the nth coordinate, and f be a 

real-valued function on X such that Y(h  )= f ( x , )  whenever h =  

(xl, x2 ,"  . , x , , . . . )  in H. Then we have: 

(i) f is y,-integrable if and only if Y is cr-integrable, 

(ii) Y is ~r-integrable if and only if Yp is cr[p]-integrable and the tr[p]-integral 

of Yp is independent of p for all p = (xl, x2 ,"  ", x,_~) in X "-1. 

Furthermore, 

y. ( f )  = t r[pI(Yp)= o'(Y)  

for all p in X" - '  and 

f ... f ~tp](Yp)dy.-ldr.-:"'dy, 

whenever these integrals exist. 

LEMMA 2.2. Let or = y~ × yz x • • • be an independent strategy on H, { Y,  } be a 

sequence of coordinate mappings, and 1 <= r < ~. Suppose that [ Y,I',  t Y21', '" • are 

tr-integrable. Then ]E~-m Yj I" is tr-integrable for all 1 <= m < n < oo. Furthermore, 

o'[p](lE?=,, Yj I 'p)= cr(J x;'=m Yj J') for all p in X m-~. 

LEMMA 2.3. Let o" = y~ x y: x . .  • be an independent strategy on H and { Y, Z}  

be two real-valued, ~r-integrable functions on H. Suppose that Y depends only on 

the first ! coordinates and Z depends only on those coordinates with indexes from 

l + m to l + m + n for some positive integers l, m, n. Then Y Z  is ~r-integrable and 

tr( Y Z )  = tr( Y) t r (Z) .  
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LEMMA 2.4. Let  or = ~1 X y2 x . .  • be an independent  strategy on H and { Y.} be 

a sequence o f  coordinate mappings such that o r ( Y , ) =  O, or(I Y, [ 2 , ) < ~  for all 

n = 1, 2, • •. ,  where r is a constant and  r >= 1. Then  there is a positive constant A 

such that 

(I I or Yj < A (n - - or([ yj [2,) 
j = m + l  1 

for all 0 <= m < n < ~ and the constant A depends only on r and not on m or n. 

PROOF. T h e  p roo f  of  this l e m m a  is essential ly the  s ame  as the  one  in the 

convent iona l  theory  of p robabi l i ty  (see [6]) and it is too lengthy to p resen t  here.  

LEMMA 2.5. Let  {a.} be a sequence of  non-negat ive  real numbers and {b.} be a 

non-decreasing sequence o f  positive real numbers such that b. ~ ~ as n ~ ~. I f  

E:=~ a . /b .  < ~, then there is a sequence {c.} of  positive real numbers satisfying: 

c.b:. Ei=~ a t ---> 0 as n ---> ~, ( i )  -1 2 .  

(ii) l <-_ c. <-_ c.+~<=c. + l for all n =O, 1 , 2 , . .  . and  c. ~ as n--->~, 

(iii) Z:=o c.{E2.-,<j~2- aflbj} < ~. 

PROOF. For  each n 1 ,2 , .  let d, = b~2 2. = . . ,  Ej=~ at. By K r o n e c k e r ' s  l emma,  

d , - - * 0  as n ~ .  H e n c e  there  is a strictly increasing sequence  {nj} of  posi t ive  

integers  such that  d, = j - ~  if n _-> nj, j = 1 , 2 , . . - .  Def ine  e, = 1 if 0=< n < nl, 

e, = j if nj =< n < n,+1, j = 1 , 2 , . . . .  Then  d,e,  <=j-' if n->_ nj, j = 1 , 2 , . . .  and 

hence  d,e,  ~ 0 as n ~ ~. 

By assumpt ion ,  we can and do assume  that  Z~=1 a , /b ,  -< 1. Le t  l0 = 0 and let 

l ~ = m a x  l H + l ,  inf = ~--~_-<2 .~ , i = 1 , 2 , . . . .  

It is easy to see that  1 -< 11 < 12 < • " " < ~ and 1. ~ ~ as n ~ ~. Now,  for  each 

i = 1 , 2 , . . ,  and each j = l ,  2, . . ., let u ~ = 0 i f j < l ~ ,  u , i = l  i f j_ -> l ,  Then  

u,jajb; = 2 ajb;' < 2 - '  
I=1 j= l i  

for  all i = 1 , 2 , . . . .  Let  vj = 1 i f j  = 1 , 2 , . . .  11- 1 and  vj = Y-7=1 u,j i f j  > 11, then it 

is easy to see that  v~ -> i if j > li for  all i = 1 ,  2 , . .  • a n d  v .  --~ ~ a s  n --> ~. By the 

defini t ions of  {uij} and {vj}, we have  1 _<- vj < vj+l for  all j = 1, 2 , . . .  and 
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I1-1 I1--1 

j = l  j = l  j = l l  j = l  j=t~ i=1 

I1--1 I1--1 I1--1 

= £ ajb71~ ~d 2 uijajbl 1~ X ajb; l"Jl- 2 ~d uijajb71~ £ ajb; l'j- 2 2 - i  ( o o .  
j=1 i = I j = 1 1  j=1 i=1 1=1 j=1 i=1 

Now,  let Wo = 1, w / =  v2/-1, j = 1 , 2 , - . . ,  then we have:  

(1) 1 =< wj <= Wj+l for  all j = 0 , 1 , 2 , . . .  and w j ~ o o  as j ~ %  

(2) 2~=0 w. (Y-2--,</zz- ajb ; 1) < ~. 

Let  c*. = min{e, ,  w.} for  all n = O, 1 , 2 , . . . .  Since e. _-< e.+l, w. _-< W.+l for  all 

n = O, 1, 2, • • • and e, ~ ~,  wn --* ~ as n ~ ~,  we have:  

(1") l < c  * <  * = = C n+l for  all n = O, 1 , 2 , . . .  and c,-->* ~ as n-->oo, 

(2*) c * d , ~ O  as n - o %  

(3*) £7=o c *(22--,<j~2- ajb ; 1) < oo. 

Now,  we inductively define {c,} by letting c o = l  and letting c , =  

m i n { c * , c , _ l +  1} for  all n = 1 , 2 , . . . .  Then ,  we have:  

(i) cn -<- c* for  all n = 0 , 1 , 2 , . . - ,  

(ii) l < c . < c , + l < = C , + l f o r a l l  n = 0 , 1 , 2 , . . ,  a n d c , ~ o o a s  n ~ o o ,  
-1 2 n (iii) c.dn = c,,b2. ~.i=1 a~ 0 as  n ~ 0% 

(iv) 27-o c , (2:--1</~-  a~b;') < oo. 

All, except  the s t a t emen t  c , --}  oo as n + m, are obvious;  we p rove  "c.---> oo as 

n--->oo" as follows. First, suppose  that  there  is a sequence  {Nj} of posi t ive 

integers  such that  CN, = c*j for  all j = 1, 2, .  • • and  Nj + ~ as j ---} m, then,  by the 

fact c. =< c,+1 for  all n = 0, 1, 2, • •. ,  c, ---} oo as n + oo. Next ,  if there  is a posi t ive 

in teger  N such that  c , ~ c *  for  all n > N ,  then c N + , ~ = c ~ , + m  for  all m = 

1, 2 , . . . ,  hence  c. + oo as n --* oo. T h e  p roof  of  L e m m a  2.5, is now comple te .  

LEMMA 2.6. Let or = g~ X yzX "'" be an independent strategy on H, {Y,} be a 

sequence of coordinate mappings on H, So = O, and Sn = £~1 Yj [or all n = 

1, 2 , . . . .  Ire > O, 0 < 8 < 1, M, Nare  two integers such that 0 <= M < N < % and 

max or([h II S N ( h ) -  S.(h)J > el)<_- a ,  
M~n<N 

then 

or([h I ma%l & ( h ) -  SM(h)] > 2e l )  ~ 1~1~  or([h II S N ( h ) -  & , ( h ) ]  > e]).  

PROOF. This  result  does  not  seem to have  been  s ta ted before .  T h e  p roof  is 

essential ly the  s ame  as the one  in the  convent iona l  theory  of probabi l i ty  (see [1]) 

and we omi t  it. 
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3. Borel Cantelli lemmas 

In this section, we will state some finitely additive versions of Borel Cantelli 

lemmas. Lemma 3.2 and Lemma 2.5 in Section 2 are central results for proving 
the strong law of large numbers. 

Let {Kn} be a sequence of clopen subsets of H, {rn} be a strictly increasing 

sequence of stop rules on H such that K. is determined by r. for all n = 1, 2,. • -. 

From these two sequences {Kn} and {z.}, we define, for each positive integer n 

and each element h = (x~,x2,. . .)  in H, a partial history qn(h)=p. .(h)= 

(x~,x2,...,x~.(h)) and a clopen subset K,+lq,(h). The following is an important 

lemma for the q-measure of countable intersections of clopen subsets of H. 

LEMMA 3.1. Let {K.}, {r,}, {q,(h)[h EH} ,  and {K~+lq,(h)[h E H }  be as 

defined above. Let g~(h)= XK,(h) (the indicator function of the set K 0 and 

g,(h ) = tr[q,-l(h )](Knqn-~(h )) for all n = 2, 3, . .  ". Suppose that {an} is a sequence 

of non-negative real numbers such that 0 <= an <= 1 for all n = 1, 2,. • .. Let 
K ~ f ~ ,  Kn+~q~(h)~f~ for all n >= 1 and each h in n~,=~ K~, and let 

for each n = l , 2 , . . . ,  each h' in NTJ~K~. Then we have o-(nZ=,K~)_--- 

tr(Kl)IIT=: at. If, in addition, tr(K~) >->_ m, then tr(nT=l K,) _-> II7=, at. 

PROOF. Lemma 3.1 is a generalization of theorem 6.1 of [7], the proof is 

lengthy and is given in [2], and we omit it. 

LEMMA 3.2. Let {K.}, {r.}, {q,(h)lh E H } ,  {K.+~q~(h)lh EH} ,  and {or.} be 

as defined above. If  
(i) there is a strictly increasing sequence {n,} of positive integers such that 

tr(K~,)~ 1 as j ~ ,  

(ii) for each j = 1 ,2 , . . . ,  m = 0 , 1 , 2 , . . . ,  and each h in n?=oK~j , ,  

o[q~,+..(h)](K~.,+.,+~q.,+,.(h))>= 1 - a.,+,.. .  

and 

1~I (1-  a.,+,~+l)'--' 1 as ] ~ ,  
m = O  

then tr([K, i.o.]) = tr(nT,=l U:=m K,)  = 0. 

PROOF. Notice that [K, i.o.] C_ UT=,, Kt for all j = 1, 2 , . - . .  Hence 
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By Lemma 3.1, 

or( A K~) => (r(K'~,)1-] ( 1 -  a, ,+,+,) .  
l=nj m = O  

Hence 

i.e., 

lim tr( ~ K~)>-- l im(~r(K' . )~0(1-anj+m+0} = I,  

imor K~ _-__1- tr( ~,) ( 1 - a  . . . . .  ~ = 1 - 1  
" ~  j ~  m = 0  

= 0 .  

Therefore, tr([K, i.o.]) = 0. 

COROLLARY 3.1. Let (r = y~ × y2 x . . .  be an independent strategy on H, {N~} be 

a sequence o[positive integers, r~ = O, and r. = Y,;--_~ N, for all n = 2, 3 , - . . .  Suppose 

that A .  is a subset of X ~°, K , = X ' " x A n × H  for all n = l , 2 , . . . ,  and 

E~=lo ' (Kn)<~.  Then cr([K, i .o.])= 0. 

LEMMA 3.3. Let {K,}, {q~(h)lh ~ n } ,  {Kn.~qn(h)lh E H } ,  and {a~} be as 

defined in Lemma  3.2. Suppose that, for each n = 1 , 2 , . . . ,  for all h in H, 

(r[q~(h)](K,+lq,(h))>=a.+~ and ~7=~an = ~. Then o'([K~ i.o.])= 1. 

PROO~ See pp. 36-37 of [7]. 

COROLLARY 3.2. Le t t rand  {Kn} be as in Corollary 3.1 and let Y.~=~ (r(K~) = ~. 
Then o'([Kn i.o.]) = 1. 

4. Strong laws of large numbers 

Now, we are in the position to prove the strong law of large numbers in our 
finitely additive setting. 

THEOREM 4.1. Let or = yt x y2 x • • • be an independent strategy on H, {Y~} be a 

sequence of coordinate mappings on H. I f  a (  Y,  ) = 0 for all n = 1, 2 , . . . ,  and, for 

some constant r >- 1, ET=~{o-([ Yn 12')/nl+'} < oo, then the set 

A = h l i m - - ~  Y j ( h ) = 0  
n ~  n j = 1 

has tr-measure 1. 
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PROOF. Since {Y.} is a sequence of coordinate mappings on H, A is a Borel 

subset of H. Since M(o') contains all Borel subsets of H (see section 5 of [7]), 

tr(A) is well defined. 

First, we choose, as is possible by Lemma 2.5, a sequence {c.} of positive real 

numbers such that: 
(i) c.(2")-(l+')X~"_-,or([ Yj [ 2 r ) " ~ 0  a s  n --->oo, 

(ii) 1 < c .  <c .+ ,_ -<c .+ l  for all n = 0 , 1 , 2 , . "  and c , ~ o o a s  n ~ o o ,  

(iii) E: =o c. {E2--,<;__<2- j -(' +') or (I YJ 12, )} < oo. 

Now, we prove Theorem 4.1 in the following three steps (let So = 0, S. = 

Xj%~ Y/, S~,. = S. - S,. for all 0 =< m < n < oo): 

Step 1. cr([h Ilim._~((2") -~ S:-(h)} = 0])= 1. 

To see this, let 

K . = [ h  l [ s 2 . ( h ) , > c : ' / " ] ,  n = 1 , 2 , - . . .  

By Markov's inequality, we have 

~r(K.) -< c ~'= ~({(2")-~' I S=-I~'}) -- c L/~(2")-~',r(I S~-12r). 

By Lemma 2.4, ~(IS~-I~')--<_A(2")'-IE~'--,~(IYjI~'), where a is a positive 

constant. Hence 

~r(K.)<-Ac,(2")-~÷"~j<=2o'(l Yj 12") (since c. -> 1). 

By (i) above, tr(K.)--->0 as n--->oo, i.e., tr(K~)---~l as n--->oo. Now, for each 

n = I, 2,. •., we define a stop rule ~-. = 2" on H and, for each n = 1, 2 , . -  -, each h 

in H, we define a subset A.+~(h) of H by 

A..~(h ) = {h' I I S2.2.+,(q.(h)h')l <= (c ~+/~'2 "+~ - c~/"2")}. 

It is easy to check that, for each n = 1 , 2 , - . . ,  An.,(h)C K~.÷lq.(h) if h is in 

("IT=~KL Hence, for each n = 1 , 2 , . . . ,  

tr[q.(h)] (K~+lq.(h )) >= tr[q.(h)] (A.+,(h )) 

1 - (c ~/~'2 "+z- c:'~4"2")-2"o'[q.(h)] (1S2.2.+,q.(h)t 2") 

if h is in NT:, KL By Lemma 2.2, the last expression is equal to 

[ -- l/4r m) n+l  --ll4r2n'~--2roe[[ S l]2r~ 1-  ~c.+, ,. - Cn J ~,l 2n, 2"+ I J"  
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Hence ,  if h is in ("17=~ K~, 

.,.-~n + lx-2~/ -1/4, 1 \-2~ o'[q.(h)](K~.+,q.(h))>= 1 - 1 z  ) ~c.+, -~c~ '/4") A ( 2 " ) ' - '  .<~.= . o ' ( [ Y i [  2') 
2 I 2 

- - 1 - ( 2 " ) - " - ' 2  + c. -gc: ' : i  A(c.c. .O "~ ~(1~1~'). 
2N<j  2 n+] 

Since 1 -_< c. _-< c.+~ _--- c. + 1 for  all n = 0, 1, 2, • • • and c. --*~ as n - - ~ ,  there  is a 

positive integer  N such that x/4, 1 t/4, > ~ c ,  - ~ c , + , =  ~ for all n => N. There fore ,  if n _-> N 

and h is in (']7=1K~, 

o[q.(h)](K~.+~q.(h)) >- 1 - (2")-'~+')Ac.+~ . )-'~.+| o(I  Yj 12'). 
2 < j ' < 2  

By (iii) above,  

~(2"+')-(1+"c.+, ~ +tr(IYjl2')<m 
n = N  2 n < j ~ 2  n 

and it is equivalent  to 

{1 -- ( 2 ' ) - ° + ' ) A c , + 1  , < E  |+10"(J Y~ J2r)}..__), 1 a s  
I = n  2 i'<2 

n -----}~. 

By L e m m a  3.2, ~ r ( [ K , i . o . ] ) = 0 ,  i.e., ( r ( [ K . i . o . ] C ) = l .  

[h [lim.~l/2"S~.(h) = 0] contains the set [K,  i.o.] c, hence  

tr(Ih I l iml  s2.(h)=O])= 1. 

But the set 

Step 2. ~r([h J lim,~®l/2" max2-<m~2-+~t S.,(h)-S2.(h)l = 0]) = 1. 

To  see this, let D .  = max2-<,.~2-+,l $2-.. I, n = 1 , 2 , . . - .  Since 

c. ~ {~r(I Y, 12')//x*'} < ~, 
n = 0  2 n - 1 < l ~ 2 n  

there  is a positive integer  Nx such that 

A ~ c ,  ~ {or(JZl2 ' ) / / I+ '}=<2 -`3+') 
I = n  21-1<1<=21 

for  all n => N1, where  A is the positive constant  in the proof  of Step 1. Now if 

n => N~, then 
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o-([I S z . . . .  S.,l>2"c~"2"])<=(2")-2"c.A(2.+,_m),-, 
re<j<=2 n+! 

_< (2")-(~+"c.A ~ o'(I Yj]~') 
2 n < ] ~ 2  n+I 

,,(I ?') 

for all m such that 2" =< m < 2 "+~. Hence, if n => N~, 

max o'([fS~ . . . .  S..I >2"cU~'])<--(2")-°+"c.a 
2n<=m.<2 n+l 2 n < i ~ 2  n+l 

By Lemma 2.6, if n => N~, 

o" ([D,, > 2 .2"  c :,/2,]) __< ~_~  o.([ t $2.2.+, I > 2"c ;"zq) 

--< ? ( 2 " )  -°+''c,, Z '~(I Y~ I =')-<--3- 2s+'Ac"{r Z 
2 " < j ~ 2  M+I L 2 n < j < 2 n + l  

Set L. = [h ID . (h )>2-2"c~ /~ ] .  Then, if n -> N,, 

Y, V)_-<¼. 

o'(L.)<2:~3"Ac. ~ {o(IYjl2')/j '+'}. 
2 " < j ~ 2  n+l 

Hence Z~=~ tr(L.) < ~. By Corollary 3.1, o'([L, i.o.] c) = 1 and notice that the set 
[h I lim.~=l/2"D. (h) = 0] contains the set [L. i.o.]L Therefore 

([ ]) ~r hl ! !m~-;  max ISm(h)-S~.(h)[=O = 1 .  
~ 2 n < m ~ 2 n + l  

Step 3. o-([h Ilim.~=~S.(h)= 0]) = 1. 
To see this, let us define re(n) as the integer such that 2"(")_- < n < 2  "(")+1, 
n = 2 ,3 , - . . .  It is easy to check that 

[h I!!m 1 _  S.(h) = 0] ._D_D [h I !im ~-~3~.)D.,(.,(h)= 0] O [k i lim.~_~3S 2 . , . , ( h ) l  = 0 ]  

and therefore, 

0]) = 1 .  
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The proof of Theorem 4.1 is now complete. 

COROLLARY 4.1. Suppose that cr = 71 x 3'2 × • " • is an independent  strategy on 

H, {Y,} is a sequence o f  coordinate mappings on H such that c r ( Y . ) =  0 for all 

n = 1 ,2 . - .  and E~=l{o'(] Y , [ 2 ) / n 2 } < ~ .  Then 

THEOREM 4.2. Suppose that cr = 3'1 x 3'2 x • • • is an independent  strategy on H, 

{a,,} is a nondecreasing sequence o f  positive real numbers such that a.--->oo as 

n -->0% and {Y,,} is a sequence o f  coordinate mappings on H s u c h  that c r (Y . )  = 0 

for all n = 1 , 2 , . . .  and E~=l{o'(Y~)/a2.}<oo. Then  

([ , .  ]~ cr h } l , m - - ~  Yj(h)=O = 1. 
n ~ ®  a n  j = l  

= Y , - Y , / a , .  Then or (Y*)=0 and PROOF. For each n 1 , 2 , . . . ,  let * -  

E~=I or(Y*, 2) < oo. Let No = 0 and 

.,,,, _-max {.,,,,_, • I, ~n,{,, i ,:..t o,~":~,-,:' +.,,-6}} ,or al, ,--1,~,....  

Since E~=lo'(Y*Z)<o% 1 - < N 1 < N 2 < . . . <  oo and Ni--~oo as j - - ~ .  For each 

j = 1 ,2 , - . . , l e t  

D j =  max ~ Y * , ,  Lj = [h J Dj (h  ) > 2(l  + j)-2]. 
NI<I<=NI +I N i-~n <~l 

Then, for Nj < l = N+1, 

= ( l + j ) 4  ~ ¢([y:12)  
l~n~Nl+l  

=< (1 + j)4 

for all j = 1 , 2 , . . . .  By Lemma 2.6, 

2 (r([ Y*]~)=< (1+ J) -2 
n = N j + !  
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' ((I d ]) l_( l+j ) -~  °" ~ Y* > ( l + j )  -2 < (1+/) -~ < 2 ( l + j ) - z  
N,<~,~,+, = 1 - (1  + j ) - ~  

for all j = l , 2 , . . . .  Hence ET=~tr(Lj)<oo. By Corollary 3.1, tr([Lji.o.]C) = 
1. Notice that the set [h [lim~®E;=~ Y * ( h )  exists and is finite] contains the set 
[Lj i.o.]L Hence o-([h [ lim,~®E~=~ Y*~(h) exists and is finite]) = 1. By Kronecker's 

lemma, we have 

o'([hl!ima-~,o 1 2 a / Y * ( h ) = O ] = t r ( [  hl!im~ ~12 ,= lY~(h)=0] )= l "  
j = l  

The proof of Theorem 4.2 is now complete. 

REMARK. In [2], Theorem 4.2 is proved by using a convergence theorem of 
L6vy in this finitely additive setting. 

COROLLARY 4.2. Let  or = 3"1 x 3"2 x " " • be an independent  strategy on H and 

{Y,} be a sequence of  coordinate mappings on H such that o'(Y.)= 0 and 

cr(y2o) < ~ for all n >= 1. Suppose that tr (Y~)  = O ( n  ~) as n ~ oo for some constant 

0 > = - 1 .  Then  

for any  constant a > (1 + 0)/2. 

COROLLARY 4.3. Let  o" = 3"1 × 3"2 × "'" be an independent  strategy on H and 

{Yn} is a sequence o f  coordinate mappings  on H such that t r (Yn)  = O, o'(Y~)<= 

M < oo for all n = 1 , 2 , . . . .  Then  

~ n a j = l  

for any a > ~. 

The next theorem is the finitely additive version of Kolmogorov's strong law 
of large numbers for independent, identically distributed strategies and 

sequences of identical, coordinate mappings. "l~he theorem is a generalization of 
Kolmogorov's strong law of large numbers in a coordinate representation 

process. Before proving the theorem, we need a lemma. 

LEMMA 4.1. Let  tr = 3' x 3" x . . .  be an independent,  identically distributed 
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strategy on H, {II,} be a sequence of identical, coordinate mappings on H, and f be 

a real-valued function defined on X such that f ( x  0 = Yt(h)  whenever h = 

(x~,x2 , . . . )  is in H. Then Y~, Y 2 , " "  are ¢-integrable if and only if f is 

3"-integrable. Furthermore, 3"(f)= tr(Y~)= (r(Y2) . . . .  whenever these integrals 

exists• 

PROOF. Since Y , ( h ) = f ( x , )  if h = ( x , , x 2 , "  . , x , , . . . )  is in H, n = 1 , 2 , . . . , t h e  

s ta tement  follows f rom L e m m a  2.1. 

THEOREM 4.3. Let or = 3" x 3' x . . .  be an independent, identically distributed 

strategy on H, { Y,  } be a sequence of identical, coordinate mappings on H. Then 

• 1 " 

if and only if Y,, Y2, " " • are (r-integrable and or(Y1) = ~r( Y2) . . . .  u, where u is a 

real number. 

PROOF. Let  us define a real-valued funct ion f on X by f ( x , ) =  Y, (h )  if 

h = (x , , x2 , . . . ) .  By L e m m a  4.1, Y1, Y 2 , " "  are o - in tegrab le  if and only if f is 

y- integrable .  

First, we assume that f is y- in tegrable  and 3,(f) = u. Whi thout  loss of 

generali ty,  we assume that u = 0. For  each n = 1 , 2 , . . . ,  let Y* . (h )=  Y , ( h )  if 

I Y . (h  )J >-_ n, Y * . ( h ) = 0  if I Y . ( h ) l > n  and f * . ( x . ) = Y * . ( h )  if h =  

(xl, x 2 , . . . ,  x, . . . )  in H. Not ice  that  Y*, is o '- integrable,  f*, is y - in tegrab le  and 

( r (Y*)  = ' ) , f i t ) .  

Since [f*,J _-<Jfl for  all n = 1, 2 , . . . ,  f*  ~ f in y -measu re  as n ~ ,  by the 

domina ted  convergence  theo rem for the finitely addit ive setting (see pp. 124-125 

of [6]), we have 3 ' ( f* , )~  y ( f ) =  0 as n---,oo. 

Set ,2., = Y*, - a,, where  an = 3'(f*,) = t r (Y*) ,  n = 1 , 2 , - - - .  Then  

{o.(Z~.)ln~}<= {o'(Y*~)ln~}= p Y"Xll Y.l~"ld°'" 
n = l  n = l  

Notice  that 

i=0 dli<lf'l~i+l] 

n - I  

(1 + j)2T({x IJ < I f~(x)l ~ . / +  1}) 
. /=0 

n - 1  

(1 + j)23'({x Jj < J f (x)J  ~ 1 + j} ) .  
] = 0  
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Hence 

~ n - I  ( 1  -~- / )  2 

{o-([Y* 2v-2~ < .  , , . .  , =  ~ ,  n ~ ~ ' ({xl j<l f (x) l<l+J})= n=l n = l  I=O 

~ "2 ~ "~_~ 
=~,~,~,({xl/-l<lf(x)l<=/})<-_ ~,({xl/-l<lI(x)l<-_/}) 

I=1 n=j /=1 

= ~ 2(j - 1)7({x l /-  1 < I f(x)I--</})+ 2 ~ y({x IJ - 1 < If(x)[-<-/}) 
j = !  j = !  

_-__2~(Ifl)÷ I <oo. 

(The last step is implied by theorem 1.2 in [2]). By Theorem 4.1, we have 

o([h'!iml~Z,(h)=O]) =1. 

Since a .  ~ 0  as  n ~ ,  lim,_~l/n E,=1 ai = 0. Hence 

tr([h ,!im 1 ~  Y*(h)= 0]) = 1. 
~ =  n /=1 

For each n =  1,2 , . . . ,  set K, = [ Y * ~  Y.], 

K*= [h I h = (x,,x2,..-,xn,-..), J f(x.)l> n]. 

It is easy to see that 

~(Ko) = ~ ( K * ) =  V({x I I f(x)l > n}). 

By theorem 1.2 of [21 , ~.:=ly({xllf(x)l> n } ) < ~  if and only if y ( I f l ) < ~ .  
Therefore ~:=lcr(K,) < ~ and, by Corollary 3.1, tr([K, i .o.] ')= 1. Since 

[K.i.o.]~n hi!ira 1 Y';(h)=O C h f l i m - 1 2 y j ( h ) = O  
n j = i  - -  n ~  n j=1 ' 

o" h i [ i ron .=  Yj(h)=0 =1 .  

Next, suppose that 



258 R. CHEN Israel J. Math. 

/[ ] or hl!!m n = Y/ (h)=0  ) = 1 ,  

then 

For each n = 1 , 2 , . . . ,  set L , = [ h l l Y . ( h ) l > n  ]. If E : . , o r ( L , ) = ~ ,  then, by 

Corollary 3.2, or([L, i.o.])= 1. Hence, it is necessary that ET=,or(L,)<~. Let 

L* = [x l l f (x ) I> n] forall n = 1 ,2 , - - - .Then  or(L.)= y(L*~)forall n = 1 ,2 , . . .  

and 

or(L.)= ~ 3,(L*)<oo. 
r l = l  n = l  

By theorem 1.2 of [2], f is y-integrable, hence, by Lemma 4.1, Y1, Y2,"" are 

tr-integrable. By the first part of the proof above, we should have y ( f ) =  

or(Y1) = or(Y2) . . . . .  0. The proof of Theorem 4.3 is now complete. 

REMARK. In [2], it was shown that if y(f+)= ~, y ( f - ) < ~ ,  then 

1 
~ n / = 1  
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