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SOME FINITELY ADDITIVE VERSIONS OF
THE STRONG LAW OF LARGE NUMBERS'

BY
ROBERT CHEN

ABSTRACT

Let X be a non-empty set, H=X", o =v,Xv,X--- be an independent
strategy on H, and {Y,} be a sequence of coordinate mappings on H. The
following strong law in a finitely additive setting is proved: For some constant
rz1, if T3 {a(|Y,.")/n'*"}<= and o(Y,)=0 for all n=1,2,---, then
13", Y, converges to 0 with o-measure 1 as n— . The theorem is a
generalization of Chung’s strong law in a coordinate representation process.
Finally, Kolmogorov’s strong law in a finitely additive setting is proved by an
application of the theorem.

1. Introduction

Let X be a non-empty set with the discrete topology, H = X with the product
topology, and F(X) be the set of all finitely additive probability measures
defined on the class of all subsets of X. As defined by Dubins and Savage [4], a
strategy o on H is a sequence (0%, 04, 05, * - * ), where oy is in F(X), and, for each
positive integer n, . is a mapping from X" to F(X). For any positive integer n,
any element (x,, X2, x,) in X" is called a partial history with length n.
Suppose that o is a strategy on H, p = (x, X2, * - *, X) is a partial history with
length n, then the conditional strategy given the partial history p with respect to
the strategy o is a strategy (written o[p]) on H defined by (i) (c[p]) = 0.(p) =
On(X1, X2, * *, X ), 1.€., (o[p]) is just the finitely additive probability measure
0. (X1, X2, - -+, X, ), and (ii) for any positive integer m, (o[p])= is a mapping from
X™ to F(X) defined by (o[p])m(xi, X2 " %Xm)= Gnem(X1, X2, X,
xi, x5+, x2) for all (x{,x3,-++,x,) in X™ In [7], Purves and Sudderth call a
strategy o on H independent, if there exists a sequence {y,}in F(X)such that
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0o = 7v1, and for each positive integer n and all n-tuple p = (x4, x4, -+ +, x, ) in X",
0.(p) = ¥a+1 and they write y, X y, X - - - for o. If, in addition, there is a finitely
additive probability measure y in F(X) such that y =y, =vy,=--- then o is
said to be independent and identically distributed, and y X y X - - - is written for

such a strategy.

In [7], Purves and Sudderth showed that if o is a strategy on H, then there
exists a field o (o) containing all Borel subsets of H and a finitely additive
probability measure (still denoted by o) such that & is defined on (o) with
some nice properties. Based on this result, we can consider (H, (o), o) as a
finitely additive probability space and a standard theory of integration with
respect to the finitely additive probability measure o on the field /(o) is
available (cf [2], [5]). Later we will use o(Y) to denote the integral of the
real-valued function Y on H with respect to the strategy o.

A sequence {Y,} of real-valued functions on H is called a sequence of
coordinate mappings on H if the function Y, depends only on the nth
coordinate forall n = 1,2,---. A sequence {Y,} of real-valued functions on H is .
called a sequence of identical, coordinate mappings on H if {Y,} is a sequence of
coordinate mappings on H which satisfies the following property: For each pair
(m,n) of positive integers, Y.(h)=Y.(h) whenever x,=x, and h=
(X1, X2y "%y Xmy = * *y Xy - =+ ) I8 in H.

In [7], Purves and Sudderth have shown that if o is an independent strategy on
H and {Y.,} is a sequence of uniformly bounded coordinate mappings on H such
that o(Y.)=0 for all n =1,2,---, then the set

A=

lim1/n Y, Y,(h)=0]

has o-measure one. In this paper, we show that the above result still holds
without the boundedness assumption (see Theorems 4.1, 4.2 below). Further-
more, we also show that Kolmogorov’s strong law of large numbers holds for
independent, identically distributed strategies and sequences of identical, coor-
dinate mappings (see Theorem 4.3 below).

2. Preliminary definitions and some useful lemmas

Throughout this paper, X is a non-empty set with the discrete topology and
H = X~ with the product topology. Subsets of H which are simultaneously
closed and open in this topology will be referred to as clopen. If K is a subset of
H, Y is a real-valued function on H, and p = (x,, x, - - -, X,) is a partial history,
then the set Kp is defined by
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Kp=[h'=(x{,xﬁ,---)lph'=(xl,xz,---,x,.,x{,xé,"')EK]
and the function Yp on H is defined by Yp(h')= Y(ph') for all A’ in H.

DEeriNITION 2.1. A stop rule 7 on H is a mapping from H to the set of all
positive integers such that if h, h' are in H and h' agrees with h through the first
7(h) coordinates, then 7(h')= 7(h). An incomplete stop rule 7* on H is a
mapping from H to the set of all positive integers and « such that if h, h'€ H
and h' agrees with h throughout the first 7*(h) coordinates, then 7*(h') = 7*(h).

DEeFINITION 2.2. A subset K of H is said to be determined by a stop rule 7 on
H if and only if, “for any h in K and any h'in H, if h’ agrees with h through the
first 7(h) coordinates, then k'’ is in K.”

The proof of Lemmas 2.1, 2.2, 2.3 is straightforward and the details are
presented in [2].

LEMMA 2.1. Let 0 =y, X y,X --- be an independent strategy on H, Y be a
real-valued function on H which depends only on the nth coordinate, and f be a
real-valued function on X such that Y(h)=f(x,) whenever h=
(X1, X2,* "+, Xn -+ ) in H. Then we have:

() fis y.-integrable if and only if Y is o-integrable,

(i) Y is o-integrable if and only if Yp is a[p]-integrable and the o|p]-integral
of Yp is independent of p for all p = (x1, x5, * +, Xay) in X" 7",

Furthermore,

v (f)=alpl(Yp) = o(Y)

for all p in X" and
o(¥)= [ - [ olp)(Yp)dvesdyas-- v

whenever these integrals exist.

LEMMA 2.2. Let 0 =y, X y,X - -+ be an independent strategy on H, {Y.} be a
sequence of coordinate mappings, and 1 = r < . Suppose that | Y,|,| Y[, - - - are
o-integrable. Then |Z}-,. Y;|" is o-integrable for all 1 = m < n <. Furthermore,
o[p)(|Zi-n Y, ') = o (|S5-n V;|') for all p in X",

LEMMA 2.3. Let o = y, X y,X - - - be an independent strategy on H and {Y, Z}
be two real-valued, o-integrable functions on H. Suppose that Y depends only on
the first | coordinates and Z depends only on those coordinates with indexes from
I+ mtol+ m+ n for some positive integers I, m, n. Then YZ is o-integrable and
o(YZ)=o(Y)o(2).
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LEMMA 2.4. Leta = vy, X y,X - - - be an independent strategy on H and {Y,} be
a sequence of coordinate mappings such that o(Y,)=0, o(|Y.[*") <> for all
n=12--, whereris a constant and r = 1. Then there is a positive constant A
such that
o

forall 0 = m < n <o and the constant A depends only on r and not on m or n.

n

V=ae-my 3 oy

=m

> Y

j=m+1

Proor. The proof of this lemma is essentially the same as the one in the
conventional theory of probability (see [6]) and it is too lengthy to present here.

LemMA 2.5. Let {a.} be a sequence of non-negative real numbers and {b,} be a
non-decreasing sequence of positive real numbers such that b, — ® as n —x. If
n=1an/b, <o, then there is a sequence {c,} of positive real numbers satisfying :
(i) cbrZia—>0asn—oo,
(i) 1=cu=cua=c.t1foralln=0,1,2,- - and ¢, > as n >,
(i) 250 Ca{Zm-1cjzoma;/ b} < 0.

Proor. For each n=1,2,:--, let d, = b3* £, a. By Kronecker’s lemma,
d.—0 as n > «. Hence there is a strictly increasing sequence {n;} of positive
integers such that d, =j?if nzn, j=1,2,---. Define e, =1if 0=n<n,
e.=jif ;=n<n,, j=1,2,---. Then de, =j ' if nzn, j=1,2,--- and
hence d.e, >0 as n —> o,

By assumption, we can and do assume that 23.; a./b, = 1. Let [, =0 and let

l; = max { I+ 1,inf{

ig—g }} i=1,2,-

It is easy to see that 1=, <[, <--- < and I, > » as n —». Now, for each
i=1,2,---and each j=1,2,---, let u; =0if j <, u; =1if j=I. Then

2 uiab; E ab =27

foralli=1,2,---.Lety;=1ifj=1,2,---,~1and v; = T, u; if j Z I, then it
is easy tosee that v, =i if j= [ foralli=1,2,--- and v, > ® as n — ». By the

definitions of {u;} and {v;}, we have 1=v,=uv,, forall j=1,2,--- and
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Z: vab; 2 viab; by’ + E vab; '= 2 ab; ,-21 21 usab;’
= -

j=h i=

l 0, 0 l ® et ll_l x
2 2 Z usab;' = 21 2 21 uzab;' = 21 ab;'+ 212" <o,
= = < e = = =

Now, let wo=1, w, = vy, j=1,2,---, then we have:

M 1=w=w, foral j=0,1,2,--- and w; > ® as j > x,

(2) Zrco Wa(Cor-1jmmaib ) < .
Let c¢* =min{e,, w.} for all n =0,1,2,---. Since e, = €..1, Wn = w,,; for all
n=0,1,2,-+- and e, > ©, w, —>® as n — o, we have:

A*) 1=ci=chforall n=0,1,2,--- and ¢, —>* as n > x,

(2*) chd.—0 as n > o,

(3*) ZroctCor1mmab; ) < 0.

Now, we inductively define {c.} by letting c,=1 and letting c, =
min{c¥, c.-,+ 1} for all n =1,2,---. Then, we have:

i c.=chforal n=0,1,2,---,

() 1=sc.=con=c.+1lforalln=0,1,2,--- and ¢, > ® as n >,

(iii) cudn = c.b* 22,0, —0 as n —>»,

(iv) Zro0cnCorrjsmah;t) < .
All, except the statement ¢, — © as n — ®, are obvious; we prove “c, —>® as
n->" as follows. First, suppose that there is a sequence {N;} of positive
integers such that Cy, = cX, forall j = 1,2, - - and N; > ® as j — «, then, by the
fact ¢, = c,s, forall n =0,1,2,- -+, ¢, = © as n — ., Next, if there is a positive
integer N such that c,# ¢ for all n >N, then cvim =cv+m for all m =
1,2, -, hence ¢. > ® as n — ». The proof of Lemma 2.5, is now complete.

LEMMA 2.6. Let 0 = y, X y, X - -+ be an independent strategy on H, {Y,} be a
sequence of coordinate mappings on H, S,=0, and S, =2].,Y; for all n=
1,2,---.Ife >0,0< 8 <1, M, N are two integers such that 0 = M < N <, and

max o (k|| Sn(h)-S.(h)| >e]) =8,
then
o (k| max |S. (k)= Su(h)|>2e )= 75 o[k || Su(h) = Su(h)| > ¢]).

Proor. This result does not seem to have been stated before. The proof is
essentially the same as the one in the conventional theory of probability (see [1])
and we omit it.
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3. Borel Cantelli lemmas

In this section, we will state some finitely additive versions of Borel Cantelli
lemmas. Lemma 3.2 and Lemma 2.5 in Section 2 are central results for proving
the strong law of large numbers.

Let {K,} be a sequence of clopen subsets of H, {7.} be a strictly increasing
sequence of stop rules on H such that K, is determined by 7, foralln =1,2,---.
From these two sequences {K.} and {r.}, we define, for each positive integer n
and each element h = (x;,x,,---) in H, a partial history g.(h)=p,.(h)=
(x1,%3,** +,x,,(h)) and a clopen subset K,.,q.(h). The following is an important
lemma for the o-measure of countable intersections of clopen subsets of H.

LemMa 3.1. Let {K.}, {m.}, {q.(h)|h € H}, and {K...q.(h)|h € H} be as
defined above. Let gi(h)= xx,(h) (the indicator function of the set K,) and
gn(h) = 0[qn-1(h)](Kagn-1(h)) foralln = 2,3, - - -. Suppose that {a.} is a sequence
of non-negative real numbers such that 0=a,=1 for all n=1,2,---. Let
K #D, Kpi1ga(h)#D for all n =1 and each h in N}_, K, and let

U’[qu-l(h’)] ([ Q K1 _{h 'g,,+;(h); an+l} ] qn—l(hl)) =0
for each n=1,2,---, each h' in Z}K. Then we have o(I,K)=
o (K-, a,. If, in addition, o(K,)Z ay, then o (N7, K)Z 112, ;.

Proor. Lemma 3.1 is a generalization of theorem 6.1 of [7], the proof is
lengthy and is given in (2], and we omit it.

Lemma 3.2. Let {K.}, {.}, {g.(h)| h € H}, {Kn.1ga(h)| h € H}, and {a,} be
as defined above. If

(i) there is a strictly increasing sequence {m;} of positive integers such that
o(K.)—1asj—>wx,

(i} for each j=1,2,---,m =0,1,2,---, and each h in ﬂr=0K:i+,,

a[qn,+m(h )] (Kft,+m+l qn,+m(h )) ; 1 - an,'+m+l
and
[T -anm)—1 as joo,
m=0

then o((K, i.0])=a(N5, Uz K,)=0.

Proor. Notice that [K, i.0.]C U, K, for all j=1,2,--. Hence
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(K. i0]) = lim a( U K,).

t=n,

By Lemma 3.1,
0'( N K?) = o(K5) [T (1 - avomn).
=nj m=0

Hence

lim (r( A K?) = 1im{a(1<:,.) ITa- a",.mﬂ)} =1,
I=n; J>= m=0

jro

ie.,

lim 0'( U K,) <1- 1im{a(K:,) [Ta- a,.,+,,.+,)} =1-1=0.
- m=0

jroo jooo i

Therefore, o([K.i.0.])=0.

CoROLLARY 3.1. Let o =y, X y, X - - - be an independent strategy on H, {N;} be
a sequence of positive integers, r, = 0, and r, = 22} N, foralln = 2,3, - - -. Suppose
that A, is a subset of X™, K,=X"XA,xH for all n=1,2,---, and
Sz a(K,) <. Then a([K,i.0.])=0.

Lemma 3.3. Let {K.}, {g.(h)|h € H}, {K..:q.(h)| h € H}, and {a.} be as
defined in Lemma 3.2. Suppose that, for each n=1,2,---, for all h in H,
o[g.(M)(Kns1ga(h)) Z uri and Z5_, a, = . Then o((K.i.0.])= 1.

Proor. See pp. 36-37 of 7).

CoroLLARY 3.2. Leto and {K.,} be as in Corollary 3.1 and let =7, o (K,.) = .
Then o([K.i.0.])=1.

4. Strong laws of large numbers

Now, we are in the position to prove the strong law of large numbers in our
finitely additive setting.

THEOREM 4.1. Leta = y, X y, X - - - be an independent strategy on H,{Y,} be a
sequence of coordinate mappings on H. If o(Y,.)=0 foralln =1,2,---, and, for
some constant r =1, Z7_{a(| Y.|")/n"""} <o, then the set

A= [h lh_rg%}_:l Y,(h)=0]

has o-measure 1.
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Proor. Since {Y,} is a sequence of coordinate mappings on H, A is a Borel
subset of H. Since (o) contains all Borel subsets of H (see section 5 of [7]),
a(A) is well defined.

First, we choose, as is possible by Lemma 2.5, a sequence {c.} of positive real
numbers such that:

() @)y oY

) 1= =cuu=c.t1lforall n=0,1,2,--- and ¢, > as n - x,

(i) 27-0 {21z (| Y 1)} < 0.

Now, we prove Theorem 4.1 in the following three steps (let S, =0, S, =

Y, Spn=S,—S. forall 0=m <n <)

*)>0 as n—o,

Step 1. a([h|lim._-{2")" Sr(h)}=0])=1.
To see this, let

k=i

2%152~(h)|>c:""], n=12,-

By Markov’s inequality, we have

oK) =cto({2")™

Sz" ,21}) — C}'IZ (2n )~210_(| 52" ,2r).

By Lemma 2.4, o(] S
constant. Hence

NS AQY " SEe(lY,

), where A is a positive

oK)= Ac,(2) " 3 o(lY,
15j=2"

) (since c, = 1).

By (i) above, o(K,)—0 as n—>x, ie., o(K;)—1 as n >, Now, for each
n=1,2, -, wedefine a stop rule 7. = 2" on H and, foreachn =1,2,---,each h
in H, we define a subset A,..,(h) of H by

Anui(h)={h'] | Samzmei(gu(h)R)| = (213727 = €127}

It is easy to check that, for each n=1,2,---, A,i(h)C KLi1qa(h)if h is in
M., K< Hence, for each n=1,2,-+-,

o[gn(B) (K'14n(h)) Z 0 (R)] (Ana(h))
; 1 — (c;i/?rznﬂ - C'—Ilidrzn)—ho,[q"(h )] (I SZ",z"”qn (h)tZr)

if h isin M7, K< By Lemma 2.2, the last expression is equal to

2r).

1 _ (C ;l/:rzrwl —_ C:1/472n)-270_(| Sz",z"”
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Hence, if h is in N, K5,

ola M (Kseg ()2 1= @) (et - 3e%) a@Y™ |3 oY)

. 1 —2r
=1- (2n) (1 1)2 2r< 1/4r _ c:]/x) A(C,.C,.H)UZ 2 l 'z:
2 2"<i§2"”
Sincel=c, =c,. =c,.+1foralln=0,1,2,--- and ¢, »>® as n —»», there is a

positive integer N such that ¢ -3¢ =3 for all n = N. Therefore, if n = N
and h is in ﬂ,=1K,,

[gn(M))(KSs1ga(h)) 21— (2") 7 Achs }_‘,2 a(| Y; ).
By (iii) above,
> Qe 3 oY) <
& -
and it is equivalent to

ao(|Y;[")}—>1 as n-ow,

l:[ {1 _ (21)—(1+r)ACH1 ' E
I=n 2’y s

2!+l

By Lemma 3.2, o([K.i.0.])=0, ie., o(K.i0])=1 But the set
[h|lim,_.1/2"S,~(h) = 0] contains the set [K, i.0.], hence

a([h lhm S»(h)=0])=1.

Step 2. o([h[lim,_.1/2" MaXorcpmzont| Sm(h) = Sor(R)[=0]) = 1.
Siml|, n=1,2,---. Since

To see this, let D, = maxse .=+t

o 3 (Y,

2"l s

2')/]l+r}< w

there is a positive integer N, such that
AX g X fo(lVi)/1ry=2e
= o=t

for all n = N,, where A is the positive constant in the proof of Step 1. Now if
n = N,, then
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U([, Sz"“ _ Sm , > 2nc;1/2r]) = (Zn)—ZrC"A (2n+1 _ m)r—l 2 0_(, '2r

m<j=2"t?

=2 "0A Y oY)

2" <js2m !
for all m such that 2" =m <2""'. Hence, if n = N,,

max  o([|Ser1— Sp | >2%¢*P=27)0A D (Y, )=

M=m 2! 2"<jm2" !

Bl

By Lemma 2.6, if n= N,

o(D.>2-2"c;"")h= g(“smm

>2%¢;"])

23+r
) §—3—Ac,,{ 2 oy,

2j=ant

ncj=ontl

).

Set L, =[h|D.(h)>2-2"c;"]. Then, if n = N,,

o(L. )_

> oY [y

2Mejmant!

Hence 27-, 0(L.) < . By Corollary 3.1, o([L. i.0.]°) = 1 and notice that the set
[h |lim,_-1/2"D,(h) = 0] contains the set [L, i.0.]°. Therefore

(r([h '!.1_122—1" max lS,,.(h)—Szn(h)[=O]) =1.

2" am =2t

Step 3. a([h |lima.iS,(h)=0])=1.
To see this, let us define m(n) as the integer such that 2"™ =< p < 27"
n=2,3,---.1It is easy to check that

[h |yﬂ%s,,(h) = 0] ») [h | im 2,,1(") Doefh) = o] N [k |!li_ql-27,17—,052m<~)(h) = 0]

and therefore,

0'([h |1nigl%s"(h)=o])=
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The proof of Theorem 4.1 is now complete.

CoroLLARY 4.1. Suppose that o = y, X y, X - - - is an independent strategy on
H, {Y.} is a sequence of coordinate mappings on H such that o(Y,.)=0 for all
n=12--- and . {o(| Y. |?)/n*} <. Then

a([h1@010%5"(;;):0])= 1.

THEOREM 4.2. Suppose that ¢ = y, X y, X - - - is an independent strategy on H,
{a.} is a nondecreasing sequence of positive real numbers such that a,— = as
n -, and {Y.} is a sequence of coordinate mappings on H such that o(Y,)=0
foralln=1,2,--- and Z;_{o(Y?2)/a’} <. Then

0([hllim;1:§1 Y,(h)=0]>=1.

n—»w

Proor. For each n=1,2,---, let Y%*=Y./a. Then o(Y¥=0 and
Zno1o(Y¥)<w. Let Ny=0 and

N,-=max{N,~_,+1,inf{n EU(Y?2)<(1+]')‘6}} for all j=1,2,--.

Since X5 0 (Y¥)<®, 1=N,<N,<-:--<o and N, > as j—». For each
Jj=1,2,--+let

2z Y:

Nj<n=l

D; = max , Li=[h|Dj(h)>2(1+j)7].

N;<I=N, 4y

Then, for N; <1 = Nji4,

(|

Y>

lsn=N4

> Y:

I=n=Njs1

)

a(1Y%)

Ny

=1+

=n

>(1+j)‘2]) §(1+,')"a(

w©

=@+))y 3 o(YIP)=+))7

for all j=1,2,---. By Lemma 2.6,
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Y%

N,<n§N,+1

>(1+ j)"]) = T_@(_lri%‘z <2AL+))?

1
g —
o)==l
for all j=1,2,---. Hence Zj.,0(L;)<. By Corollary 3.1, o([L;i.0.]')=
1. Notice that the set [h |lim,_..27_; Y*(h) exists and is finite] contains the set
[L;i.0.]° Hence a([h |lim,-.2]-: Y 5(h) exists and is finite]) = 1. By Kronecker’s
lemma, we have

a([h |1"i§3nai”2:1 aYi(h)= 0] = a([h ’lii‘lain,z:l Y,(h)= 0]) -1,

The proof of Theorem 4.2 is now complete.

REMARK. In [2], Theorem 4.2 is proved by using a convergence theorem of
Lévy in this finitely additive setting.

COROLLARY 4.2. Let 0 = y, X y,X -+ be an independent strategy on H and
{Y.} be a sequence of coordinate mappings on H such that o(Y,)=0 and
a(Yi) <o foralln = 1. Suppose that o(Y?2) = O(n®) as n — for some constant
0z — 1. Then

o([rim 3 vr=o) -

for any constant a > (1+ 8)/2.

COROLLARY 4.3. Let 0 =y, X y,X - be an independent strategy on H and
{Y.} is a sequence of coordinate mappings on H such that o(Y,)=0, o(Y?) =
M<w foralln=1,2,---. Then

a'<[h (hﬂniz Y,~(h)=0]) =1

for any a >3.

The next theorem is the finitely additive version of Kolmogorov’s strong law
of large numbers for independent, identically distributed strategies and
sequences of identical, coordinate mappings. The theorem is a generalization of
Kolmogorov’s strong law of large numbers in a coordinate representation
process. Before proving the theorem, we need a lemma.

LemMma 4.1. Let o=y Xy X+ be an independent, identically distributed
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strategy on H, {Y.} be a sequence of identical, coordinate mappings on H, and f be
a real-valued function defined on X such that f(x:)= Y.(h) whenever h =
(x1,X2,---) is in H Then Y, Y, --- are o-integrable if and only if f is
vy-integrable. Furthermore, y(f)= o(Y:)= o(Y2)=--- whenever these integrals
exists.

Proor. Since Y.(h)=f(x.)if h = (x1, x5, ", Xn, -+ )isin H,n=1,2,-- -, the
statement follows from Lemma 2.1.

THEOREM 4.3. Let 0 =y Xy X--- be an independent, identically distributed
strategy on H,{Y,} be a sequence of identical, coordinate mappings on H. Then

a-<[h lyﬂ%; Y,(h)= u]) =1

ifand only if Y,, Y,, - - - are a-integrable and a(Y.)= o(Y,)= -+ - u, whereuisa
real number.

Proor. Let us define a real-valued function f on X by f(x,)= Y.(h) if
h =(xi,x;++). By Lemma 4.1, Y,, Y,,--- are o-integrable if and only if f is
y-integrable.

First, we assume that f is y-integrable and y(f) = u. Whithout loss of
generality, we assume that u =0. For each n=1,2,---, let Yi(h)= Y.(h) if
|Y.(h)|zn, Y%h)=0 if |Y.(h)|>n and fi(x,)=Yuh) if h=
(x1, %2+, %, - +) in H. Notice that Y7} is o-integrable, f7 is y-integrable and
a(Y3)=v({%).

Since |f%|=|f| for all n=1,2,---, f¥— f in y-measure as n —», by the
dominated convergence theorem for the finitely additive setting (see pp. 124-125
of [6]), we have y(f%)— y(f)=0 as n —x.

Set Z, = Y% - a,, where a. = y(f1)=0o(Y3}), n=1,2,---. Then

SAZIn} = 2o (V) 0= 3 | Vixirien do.

Notice that

n-1

f Yf-X[lYnl_::nldU:ffﬁde = 2[ ~ fidy
n =0 Jli<|f*|=j+1]
n—1
é%(l+i)’v({x li<|fax)=j+1})

=5 A+ v i <If)l S 147D,
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Hence

(o vipmy = 3 5 CHE  x < fol =1+ )

IIMB

2> 27({xlf—l<lf(X)l§i})é22F7({xli—1<5f(x)l§i})

1l
LMS

—2 G-yl - 1<If@) S H+2 3 ylx]j - 1< f@]=))
=2y([f)+1< .

(The last step is implied by theorem 1.2 in [2]). By Theorem 4.1, we have
([h lim — 2 Z(h)= 0])
Since a,—0 as n —>w, lim,_...1/n Zf-, 4, =0. Hence
o(|n fim 3 vith=0])=

For each n=1,2,---, set K, =[Y # Y,],

K*=[h|h=(x,%Xs X)), | f(xa)|>n].

It is easy to see that
o(K.) = a(K7) = y({x || f(x)[>n}).

By theorem 1.2 of [2], Zi_iv{x]||f(x)|>n}) < if and only if y(|f])<c.
Therefore Z;-,0(K,) <® and, by Corollary 3.1, o([K.1.0.]°)=1. Since

[K.i0]° N [h ]yﬂ%g Y*;(h)=0]g [h |1ni53°%j2; Y,»(h)=0],
([hlllm ZY(h) 0])

Next, suppose that
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U([h ;m%;‘;l Y,(h)=0])= 1,
then

o[ tim X8 = o]} = 1.
([ 1m 22 =0])

n—so

For each n=1,2,---, set L, =[h||Y.(h)|>n]. If 2;.0(L.) =, then, by
Corollary 3.2, o([L.i.0.])= 1. Hence, it is necessary that 27_,0(L.) <%. Let
L*=[x||f(x}]>n]foralln=1,2,---. Then o{L,}) = y(L}) foralln=1,2,---
and

EIU(L")=217(L:)<0<>.

By theorem 1.2 of [2], f is y-integrable, hence, by Lemma 4.1, Y, Y,,-- - are
o-integrable. By the first part of the proof above, we should have y(f)=
o(Y,)=o0(Y,)=---=0. The proof of Theorem 4.3 is now complete.

ReMaRrk. In [2], it was shown that if y(f*) =, y(f7) <, then
a’([h |lim%2 Y,-(h)=oo]> - 1.
n—x ’=1
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